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Abstract-The turbulent mixing of two gases with highly different molecular masses in a plane shear layer 
is considered. A calculation model incorporating modelled transport equations for the partial density 
fluctuations is developed and the numerical results are compared with measurements showing good 

NOMENCLATURE 

CP 

cc ,t cc:, cc, 
> 

, constants in turbulence model ; 
cQ,p cQz 

mass fraction; 
divergence of velocity; 
molecular diffusivity; 
stress tensor; 

diffusive mass flux of component i in 
direction a; 

kinetic energy of turbulence; 
number of species ; 
order of magnitude; 
correlation of partial densities; 
pressure ; 
Reynolds number; 
gas constant of component i; 
velocity components; 
velocity vector; 
time ; 
temperature; 

x,y,x,, Cartesian coordinates. 

Greek symbols 

pressure gradient parameter ; 
characteristic thickness; 
Kronecker-symbol ; 

flow variables ; 

density ; 
Prandtl/Schmidt number; 
dynamic viscosity; 
dissipation rate of k. 

Superscripts 

Favre-average ; 
,, Favre-fluctuation; 

-3 unweighted average. 

Subscripts 

A,B, components in binary mixture; 

$, 
species ; 
reference value ; 

agreement. 

t, turbulent ; 
a,/?,?, Cartesian coordinates; 

4, flow variable. 

1. INTRODUCTION 

THE TURBULENT mixing of two gases with different 
molecular mass in a free shear flow is of interest for 
the basic understanding of the turbulent mixing 
process as well as for technical applications. The 
plane mixing layer at subsonic speeds is considered 
where helium and nitrogen mix turbulently. The 
difference in molecular masses produces strong 
density fluctuations at a level which is comparable to 
the density fluctuations that can be expected in 
turbulent combustion processes such as turbulent 
Hz-air diffusion flames. A calculation model based 
on the k--E model [lo] is developed incorporating 
transport equations for partial density correlations. 
The calculations are compared with measurements 
by Rebollo [l] and show good agreement. It turns 
out that the turbulent transport of mass in this 
particular flow has some interesting peculiarities, 
namely a surprisingly small turbulent Schmidt 
number and as a consequence, an overshoot of the 
dynamic pressure on the high velocity-low density 
side. Both features are correctly represented by the 
calculation model. 

2. FLOW CONFlGURATlON 

The type of turbulent flows considered are plane 

free shear flows in the form of mixing layer or jet. 
Two gases with different molecular masses, which 
have at the same pressure and temperature different 
densities, enter the flow regime separated by a thin 
wall as parallel streams with different velocities (see 
Fig. 1). The two components mix in the developing 
shear layer. Due to the different densities of the 
entering streams, the turbulent mixing in the shear 
layer will show a fluctuating total density. A selected 
set of experimental data for this kind of turbulent 
shear flow with density fluctuations was provided by 
Rebollo [ 11. He considered the plane mixing layer in 
which the upper stream consists of helium and the 
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lower stream of nitrogen. The velocities and densities stream values and laminar boundary layer profiles at 
on the upper and lower boundaries under a pressure the upper and lower side of the splitter plate. The 
p = 4 atm. are: turbulence quantities k and E are given as small 

helium p2 = 0.641 kgmm3 values such that a turbulent viscosity of the order of 

11~ = 10.9ms-’ the molecular one is produced. The mean con- 

nitrogen p, = 4.49kgmm3 
centration is a step function at the end of the splitter 

u, = 4.1Sms-‘. 
plate and the density correlations are set to zero. The 
conditions at the upper and Iower boundary of the 

The free stream Reynolds numbers per unit length flow regime are of Dirichlet type for mean values and 

are then RP* = 36OOcm-’ (helium) and of Neumann type for second order moments. 

Re, = 12OOOcm~’ (nitrogen) and the flow satisfies Among the numerous experimental results con- 

the equilibria condition cetning free shear flows (see [2], and [3,4]) only few 
are concerned with longitudinal pressure gradient or 

Pi u: = PZ& (I) variable density. Brown and Roshko [5] studied the 

FLOW CONFIGURATION 

helium U1 

I 6 

nitrogen U, 

I 7, 

pressure gradlent parameter 

Q(=XdU 
U dx 

FIG. 1. Flow configuration. 

The pressure gradient ~rameter a is defined as 

x du a = - -.- 
u dx’ 

where u is the undisturbed velocity on either 
boundary of the shear layer. The measurements in 
[l] were performed for two cases: zero pressure 
gradient (LX = 0) and positive pressure gradient 
(CL = -0.18). It can be shown [l] that a self-similar 
ilow with pressure gradient is possible only if the 
parameter tl is constant, This condition cannot be 
applied to the region of the shear layer close to the 
physical (or virtual) origin, because 01# 0 and 
constant would imply that the pressure gradient goes 
to infinity as x approaches the origin. To remove this 
unnecessary and unphysical complication for the 
calculations, the pressure gradient in the initial 
region (ca 2.5cm) was described by a polynomial 
giving zero pressure gradient at the origin and 
matching the value and the derivative of LY = const. 
at the downstream end. 

For the calculation the prescription of the up- 
stream boundary values for all quantities determined 
from parabolic differential equations is necessary. 
The initial velocity profile consists of constant free 

turbulent shear layer involving two gases with highly 
different densities. More recently. measurements in a 
methane-air free jet concerning the concentration 
field were reported 161. From these available data the 
results of Rebollo [l] provided the best test case for 
the present study. 

3. TURBULENCE MODEL 

The turbulent shear flow described in the previous 
chapter exhibits large density variations due to the 
highly different densities at the lower and upper 
boundary. Therefore, it is appropriate to use density- 
weighted (Favre [7]) statistics for the description of 
the turbulent flow field. Dependent variables #(x,“), 
except density p and pressure p, are spiit into 

cP(x,t) = &x,f)+#“(x,t), (3) 

where the Favre-mean 4 is defined as 

6(x, t) = P4lP> (4) 

and the unweighted mean is denoted by 7. Averaging 
of the mass conservation equation leads to the closed 
equation 
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The averaged momentum equations are 

where 

D=du:. 
ax;. . 

The d=ity-weighted kinetic energy of turbulence 
L z $t~:‘t$ satisfies (see [7]) 

_a/? _1 a!? - 0 t + PL,* ax, 

where the dissipation rate E satisfies a very com- 
plicated transport equation which will not be 
reproduced here. 

The shear flow considered here can be treated as 
isothermal, thus reducing the energy equation to 
T = const. and eliminating temperature correlations. 
Composition and mixedness can be described either 
by partial densities and their second order moments 
or concentrations and their correlations. Introducing 
mass con~ntration ci as 

c.=p’. 
P’ 

i = l(l)N, (9) 

where N is the number of components in the 
mixture, it is easy to verify that 

- 
;=pi - > 
’ P 

but 

Therefore, it is not possible to express ci in terms of 
first and second order unweighted moments and vice 
versa. Consequently, the choice of statistics for ci 
must be made with respect to possible extensions of 
the model. For the treatment of chemical reactions 
with Borghi’s approach [8] based on second order 
moments the description using partial densities is 
advantageous [9] and therefore chosen here. The 
equation for ci follows as: 

where Ti is the molecular diffusion coefficient 
according to the simplest approximation for multi- 
component molecular diffusion as a Fick’s law-type 
expression. The molecular term in equation (11) is in 
turbulent flows for sufficiently high Reynolds num- 
ber negligible compared with turbulent diffusion 
except in the close vicinity of fixed walls, thus 
rendering the assumptions regarding Qj unimpor- 
tant. For the description of mixedness of the shear 
flow the knowledge of the correlations, 

Qii = {J;p;, (13 

is essential. The Qij satisfy the following transport 
equation : 

aQij aQij Et++- 
1 

7 2 _N 7 2 -h 

-v,p. -pci-vlci -pcj 
J ax, ax, 

r SJiz , SJjx 
-Pjz-Pidx,* (13) 

where the diffusive mass flux Ji, is defined as 

Ji, is -P-C/~ 2. 
‘II 

(14) 

For a mixture of ideal gases, the averaged thermal 
equation of state is 

115) 

For isothermal flows (I 5) reduces to 

r_i = (?TCR,E,. (16) 

The system of equations considered so far contains 
various unknown correlations for which closed 
expressions must be given. 

Closure assumptions 
For simple shear flows with a dominant mean 

velocity component (parabolic in the mean) the 
concept of eddy tranSport coefficients is a satisfac- 
tory modelling assumption [4] for the prediction of 
first order moments. For Bows with variable density 
several extensions of this concept can be stated, 
which are in general not equivalent. The following 
form will be employed here for the density-weighted 
Reynolds stress: 

and for the turbulent flux of @(x,t), the concept of 
turbulent Prandtl/Schmidt numbers o,,, is invoked 

(##Pand4+~): 

where cr$ = O(l) and constant. The turbulent (eddy) 
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viscosity pit is calculated from [lo] 

where E = $&$ is the turbulent kinetic energy and E‘ 
the rate of dissipation of &. 

Correlations of the form d,. $, where 4 and $ are 
determined by different parts of the corresponding 
spectra (i.e., low and high wave number range), are 
modelled assuming statistical independence [.5] : 

~~~*~. w 

For order of magnitude estimates the Schwarz- 
inequality is used together with further experimental 
evidence if available or results of computer opti- 
rni~tjon conceding cross-correlations. Furthermore 
correlations with the fluctuating pressure are 
neglected. 

The system of modelled equations 

The application of the modelling assumption (17) 
to the Reynolds stress term in the momentum 
equation for the dominant velocity component ii in a 
steady plane flow yields 

where the laminar stress term is neglected. The 
calculation of the eddy viscosity is based on the 
turbulent kinetic energy & and its dissipation rate g. 
Neglecting the correlation of pressure and velocity 
divergence and the diffusion of k” due to viscosity and 
pressure fluctuations in (8) the following mode&d 
equation for E is obtained using the modelling 
assumptions discussed above: 

The compIi~ated structure of the exact nonclosed 
transport equation for the dissipation rate does not 
allow detailed modelling. Crude model assumptions 
[ll] lead to 

which is analogous to the equation for the incom- 
pressible case [4]. Note that the term accounting for 
the pressure gradient in (22) and (23) vanishes for 
incompressible fluids as it must. For the mass 
transport equation (1 l), the modelling assumptions 
lead to 

(24) 

where the laminar diffusive term and the density 
concentration derivative correlation have been neg- 
lected because both are one order of magnitude 
smaller than the leading term for high turbulent 
Reynolds numbers. The modelled equation for the 

density correlation & is given as 

-c&@ ; Qij-cQ,p; (~~+Q’p;). (25) 

From the definition of the mass fraction ci follow the 
local relations: 

and 

7 = 7 1 Qij (26) 

j 

p’pi = 1 Qij. 
i 

(27) 

The mean density p is obtained from (16) for 
isothermal flows without diffculty. 

Realizability conditions 

Modelled transport equations for statistical mo- 
ments do not ensure that their solutions will satisfy 
all mathematical constraints for moments unless the 
closure assumptions incorporate the constraints. The 
density correlations Qij in particular must satisfy the 
following inequalities, if the instantaneous density p 
has the upper bound pO. A binary mixture with 
components A and B is considered. For this case and 
negligible pressure fluctuations and constant tem- 
perature it can be shown (using the equation of 
state) that the instantaneous density p is bounded by 
the maximal density on the boundary of the flow 
field. This upper bound p0 for p(x, t) is the density of 
the mixture consisting of the fluid with the larger 
molecular mass only. Then the au~o~orrelations are 
bounded by 

O<Q,,<p,jic, l-“c7; 
(-1 

(28) 
PO 

and 

O<QQ,,~p,pc, 
c > 

1-;g t (29) 

The cross correlation is bounded by 

-_c3*q’,c”;; 6 QAB 6 ppo- 

The mean mass functions obviously satisfy 

o<g< 1. (31) 

In order to enforce these conditions, the solution of 
the modelled transport equations was checked at 
every step and clipped if necessary. 
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FIG. 2. Spreading rates of plane shear layer for zero pressure gradient (a = 0) and positive pressure 
gradient (a = -0.18), measurements from [ 11. 

4. RESULTS 

All the calculations were made with the boundary 
conditions described in Section 2 and the values of 
the constants given in Table 1. An important 
parameter describing the global development of the 
mixing layer is the spreading rate. Defining 

Table 1. Constants of turbulence model 

0.4 0, OA (r c,> c,, cl, CP 

1.0 1.3 0.26 0.26 1.45 2.0 0.4 0.4 

N,-N, He-N, He-H, 

‘Q, ‘Q, ‘Q, ‘Q, ‘,I ‘Q, 
5.0 0.6 3.0 0.6 2.0 0.5 

Au = uZ--u, the characteristic thickness 6, with 
respect to the velocity profile is taken as the distance 
between the points with u, +0.2Au and ur +0.8Au in 

accordance with [ll]. The following values were 
obtained for the spreading rate dd,/dx (see Fig. 2): 

tl = 0 (zero pressure gradient): 

d6,_ 0.1 

i 

experiment [l] 

dx - 0.085 calculation 

!I = -0.18 (positive pressure gradient): 

dS,_ 

1 

0.128 experiment [l] 

dx - 0.130 calculation. 

The comparison of the thickness 6, with the 
experimental values in Fig. 2 shows good agreement 
for t( = 0, but for c1 = -0.18 the calculated curve is 
shifted above the experimental values with the 
spreading rate in good agreement. This discrepancy 
is due to the lack of information about the initial 
velocity profile and the pressure gradient distribution 
in the initial region (0 < x < 2.5cm) which was 

Ft DENSITY PROFILES 

_ 6. 

.5. 

_ 4 . 

.3. 

0(=-0.18 
0 ----- exp. 

a =to.o 
0 exp. 

.2. 

FIG. 3. Mean density profiles for G( = 0 and a = - 0.18 at Y = 5.08 cm measurements from [1] 
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r?P DYNAMIC PRESSURE 

, 0.01 m 

0 exp 
1 

FIG. 4. Dynamic pressure for !I= 0 and c( = - 0.18 at x = 5.08 cm, measurements from [ 11. 

interpolated (see Section 2). The thickness of the 
initial velocity profile was estimated from the length 

of the splitter plate and the Reynolds number based 
on free stream velocity and kept constant for both 
cases. 

The agreement between measured and calculated 
mean values is good as shown in Figs. 3 and 4. The 
mean dynamic pressure from the experiments is close 

to pu2 and this quantity is related by 

pu2 = $2 +pp, (32) 

to the Favre-averaged variables. For ii”* E 2/3k, the 
second term is below 2% of the first and the 
correction becomes negligible. The dynamic pressure 
in Fig. 4 has two characteristic features: the 
undershoot due to the wake of the splitter plate, and 
an overshoot which is a consequence of the variable 
density. The overshoot is of particular interest 
because it does not appear in constant density flows. 

It appears on the low density-high velocity side of 
the shear later. Within the framework of the 

calculation model suggested in this paper, the 
overshoot can only appear if the turbulent Schmidt 
number oA is significantly smaller than unity 
(between 0.2 and 0.3) which is in agreement with the 
similarity analysis in [l], but not with the values 
(as z 0.6 [12]) for the turbulent Schmidt number of 
the mixture fraction used in calculations for turbu- 
lent reacting flows with similar levels of density 
fluctuations. To study the influence of the Schmidt 

number oA on the development of the overshoot in 
the shear layer with and without pressure gradient 
several runs with different oA were made. The results 
plotted in Fig. 5 show for the case GI = 0 (zero 
pressure gradient) a simple relation between oA and 
the amount of overshoot, whereas for the case with 
positive pressure gradient (U = - 0.18) the relation is 
more complex. This is due to the direct influence of 
the density fluctuations via the pressure gradient on 
the development of k and E in (22) and (23). 

I- 

DYNAMIC PRESSURE PROFILES 

Influence of Schmidt number 

FIG. 5. Influence of turbulent Schmidt number bA on dynamic pressure for cc = 0 and L-I = - 0.18. 
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E DENSITY FLUCTUATlONS 

FIG. 6. Intensity of density Ructuations for a = 0 and E = -0.18 at x = 5.08cm, measurements from [l]. 

VELOCITY PROFILES 

1. 

.6 

FIG. 7. b&in velocity for c( = 0.0 and a = -0.18 at x = 5.08cm, experimental values [l] calculated from 
mean density and dynamic pressure. 

The mean velocity profiles in Fig. 7 are compared 
with profiles calculated from the measured values for 
the mean density and the mean dynamic pressure. 
The solution of (21) is the Favre-mean velocity 
whereas the velocity calculated from the experimen- 
tal results is something between the weighted and 
unweighted average. But the difference between the 
two velocities can be expected to be small, because 
the error in the dynamic pressure is small and the 
comparison is still possible. Taking this fact into 
account the agreement between calculated and 
(indirectly) measured mean velocity is acceptable. 

The density fluctuations variance in Fig. 6 show 
agreement between calculation and experiment in 
level and form of the profile. At the location of the 
overshoot of the dynamic pressure the variance 
profile exhibits a characteristic step-like form in- 
dicating relatively strong fluctuations, which are 
present in the calculated profile but still too small. 

For the comparison between calculated and 
measured shear stress in Fig. 8, the same reservation 

as in the case of the mean velocity has to be made, but 
with possibly larger errors. The calculated values are 
noticably smaller than the experimental ones but the 
shapes of the profiles agree quite well. For the flow 
with positive pressure gradients, the calculated shear 
stress shows a slight undershoot on both sides which 
is not recognizable in the experiments on the right 
end of the profiles. It is a consequence of a slight 
over- and undershoot in the mean velocity profiles 
(Fig. 7), but the difference on the right side (high 
velocity-low density side) is probably due to the 
underprediction of the level of the density fluc- 
tuations in this part, which in turn changes the 
turbulent viscosity via the pressure gradient term in 
the k and E equations. 

5. CONCLUSIONS 

A free turbulent shear flow with strong density 
fluct~tions due to the mixing of two different gases 
was calculated using a turbulence model based on 
the k-E system suggested by Jones and Launder [lo]. 
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REYNOLDS STRESS PROFILES 

016 
=-0.16 

= 0.0 

FIG. 8. Turbulent shear stress for a = 0.0 and a = -0.18 at x = 5.08cm, experimental values [1] 
calculated from mean density and dynamic pressure. 

The transport equations for the correlations of 
partial density fluctuations were included in the 
model to obtain good agreement of the variance of 

the total density fluctuations with the values measured 
by Rebollo [l]. The results of the calculations lead 
to the following conclusions : 

(1) The turbulent Schmidt number oA for the 
gradient flux model describing the turbulent trans- 
port of mass in crossflow direction must be small 
(gA z 0.26) compared to unity in order to produce 
the overshoot of the dynamic pressure found 
experimentally. For the zero pressure gradient flow 
cA determines the turbulent diffusion of the mean 
concentration cA which in turn determines the mean 
density (16) and influences the turbulent viscosity via 
(19). But for nonzero pressure gradient an additional 
effect appears in the k and E equations (22) and (23) 
as pressure gradient source/sink term is modelled as 

being proportional to the density fluctuation in- 

tensity [p”ll/‘. The intensity [p’2]“2 in turn is 
determined by Qij, which contain oA in the cor- 
responding production terms. This leads to the more 
complex dependence of the dynamic pressure over- 
shoot for dpjdx > 0 compared with dp/dx = 0 
shown in Fig. 5. 

The Schmidt number gA was kept constant with 
respect to coordinates in the calculations which does 
not correspond to the profile for oA found by [l], 
where oA increases as the highly intermittent boun- 
dary parts of the shear layer are approached. This 
tendency is in contrast to the Prandtl number profile 
found by Chevray and Tutu [ 131 for the transport of 
heat in a free jet. The concept of turbulent 
Prandtl/Schmidt numbers applies well in the core 
region (large gradients) of the turbulent shear layer, 
but not so well in the highly intermittent (small 
gradient) boundary regions. 

(2) The mean density and the p” profiles show a 
characteristic hump on the high velocity-low density 

side of the shear layer roughly in the region of the 
dynamic pressure overshoot. This leads to the 

conclusion that the turbulence mixes mass more 
efficiently in this region than momentum. This is 
reflected in the small value of bA. 
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CALCUL DES ECOULEMENTS TURBULENTS A CISAILLEMENT AVEC DE GRANDES 
FLUCTUATIONS DE DENSITE 
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Rizsumk-On &die le melange turbulent de deux gaz de masses moleculaires tris differentes dans une 
couche de cisaillement plane. Un modele de calcul incorporant des equations de transport modilisees 
pour les fluctuations de densitb est developpe et les rbultats numeriques sont compares aux mesures avec 

lesquelles ils sont en bon accord. 

DIE BERECHNUNG VON FREIEN, TURBULENTEN SCHERSTRGMUNGEN MIT STARKEN 
DICHTESCHWANKUNGEN 

Zusammenfassung-Der turbulente Mischungsprozess zweier Gase von stark unterschiedlicher Molmasse 
in einer ebenen Scherstromung wird untersucht. Ein Rechenmodell, das modellierte Transpo- 
rtgleichungen fur die Korrelationen der Partialdichten enthllt, wird entwickelt. Die numerischen 

Resultate werden mit Messwerten verglichen und zeigen gute Ubereinstimmung. 

PACqET TYP6YJIEHTHblX CABHIOBblX CBOSOflHblX TE’4EHMH IIPM 
MHTEHCMBHblX IIYJIbCAHMRX IIJIOTHOCTM 

AwoTauns ~ Paccsiarpriaaerca ryp6ynetiruoe ch4ememie nayx ra30a c crmbtio ornri~ammnbnicn 
MoaeKynnpHbIMw MaccaMIi B nnocKoM cnoe cMeueHm. Pa3paBoTaHa Monenb pacrt-ra. conepxauan 

MOLlenbHble ypaBHeHWl nepeHOG4 nynbCaUHfi nJlOTHOCTW pa3,lHqHblX KOMnOHeHT ra3a; pe3ynbTaTbl 

paCV~TOBCOnOCTaBneHbIC LlaHHblMki H3MepeHHii. nO,lyqeHO XOpOluee COBnaileHHe p3ynbTaTOB. 


